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Abstract 

A weighted correlation function as a method for 
computing electron-density maps is proposed to 
reduce the errors of the Fourier syntheses performed 
on inaccurate and/or incomplete data. The formulae 
are revised for the difference Patterson vector search, 
for multiple isomorphous replacement (MIR) and 
single isomorphous replacement (SIR) syntheses and 
for the difference Fourier synthesis. The examples 
show that the correlation-function approach has the 
potential to provide more reliable results than those 
obtained by conventional Fourier syntheses. 

Introduction 

The Fourier transformation is the mathematical rep- 
resentation of the nature of the diffraction process. 
The individual point scatterers form a regular grid 
over the unit cell which comprises the electron- 
density map p(r,) of an object. The structure factor 
of the ith scattering unit p(r) is f(k,r/) = p(r~) exp(ikr;), 
r; being its position in the real space and k being the 
scattering vector in reciprocal space. The sum of the 
complex structure factors f(k,r0 of all individual 
scatterers of the map makes the total structure factor 
of a whole object F(k), 

F(k) = •f(k,r,), 

where 

f(k, r;) = p(r,) exp (ikr~). 

The basic property of the diffraction is that the 
average product of waves f(k,rj,) and f(k,rj2) diffrac- 
ted by any pair of individual scatterers p(rj~) and 
p(rj2) is always zero over the reciprocal space except 
when rj~ = rj2, 

( 1/N) Yf(k,rj,)f*(k,rj 2) = (ffk,rj~)f* (k,rj 2)) 

= p(rjl)p'(rj2)(exp [ik(rj~ - rj2)]) 

---- 0 ,  

where f*(k,r/~ ) is the complex conjugate of f(k,rj,); 
the summation is over all N---, ~ reflections hkl 
(0,0,0) in reciprocal space. The cross-term (exp [ik(rj~ 
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- r/2)]) comprises the mean value of a periodic func- 
tion and it is always zero in the ideal case at infinite 
resolution. This means that the individual com- 
ponents f(k,rj,) and f(k,rj2) of a complex diffraction 
pattern F(k) are orthogonal to each other and the 
electron density p(rj~) can be returned provided both 
the amplitudes and the phases of the complex struc- 
ture factor F(k) are known and the resolution is high 
enough to ensure that the cross-terms are zero, 

p(rj,) : (F(k) exp ( - ikrj,)> 

= p(rj2)(exp [ -  ik(rj~ - rj2)]) + p(rj0 = p(rj~), 

where ( )  means averaging over the reciprocal space 
hkl ~ (0,0,0) as above. Now the conventional Fourier 
synthesis can be rewritten in the form, 

p(ri) = (F(k) exp ( - ikr0> = (r(k)t*(k,ri)>, (1) 

The term t(k,r;)=exp(ikr;) = l exp(ikri) can be 
understood as the structure factor of a unit scatterer. 
Hence the sense of the Fourier transformation is to 
probe the net diffraction pattern with a trial wave t 
diffracted by a unit scatterer. The probe t(k,ri) speci- 
fically extracts its mate f(k,r,.), corresponding to the 
same position r; in the unit cell, from the net pattern 
F(k) as (f(k,r,.)t*(k,r,.)) = p(r,.) and the cross-terms r i ;~ 
rj are zero: (f(k,rj)t*(k,r;))= 0. The probe is succes- 
sively applied to the map, point by point, and returns 
the electron density of a molecule. 

The equation t(k,r;) = exp(ikri) corresponds 
directly to the space group P1. For the higher 
symmetry space groups t(k,r;) becomes the sum of 
the unit structure factors over M symmetry-related 
positions in the unit cell, 

t(k,r/) = Y.t(k,r~,,,), m = 1 --* M. 
m 

The Fourier synthesis (1) works perfectly for an 
ideal case where the resolution is infinite and 
structure-factor amplitudes and phases are precise. 
Real diffraction data sets are collected to a limited 
resolution with imprecise amplitudes and phase 
determination can produce significant errors and 
leads to distortions in the electron-density map. The 
errors can alter the value of the product 
(f(k,r~)t*(k,ri)) and hence the true value p(ri) of the 
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electron density at r, is not returned correctly by the 
Fourier synthesis. The problem of electron-density 
evaluation at a position r; can now be reformulated 
in more general terms. Looked at another way, a 
wave f(k,ri) needs to be extracted from a set of noisy 
experimental observations F(k). Various mathemati- 
cal approaches are available by which the Fourier 
transformation (1) is the simplest product function. 
However for problems like this, the correlation func- 
tion is known to be the most appropriate (Samuels, 
1989). The violation of the a p r io r i  assumptions 
essential for the Fourier transformation results in 
map errors which might be avoided by the corre- 
lation function where these assumptions are no 
longer necessary. Below we show how the weighted 
correlation-function formulae can be applied to some 
conventional Fourier-based map syntheses used in 
protein crystallography. We also test its performance 
for a simple model case and for a real heavy-atom 
search using experimental data. For error-free data 
available to infinite resolution both approaches pro- 
duce identical results but the correlation function as 
the more rigorous approach might provide the more 
precise answer for a real case which contains experi- 
mental errors and limitations. 

Fourier synthesis and the correlation function 

For simplicity we shall omit the index k and assume 
that the average is carried out over all reflections 
excluding F0oo. We also omit the index r~ so that 
t(k,r~) will be designated t or L. The scalars will be 
written in italics (the structure-factor amplitude will 
be F) and the complex numbers in bold (the complex 
structure factor is F). Capital letters will stand for 
the total diffraction pattern (F or F) and lower case 
will correspond to the trial waves (t or t). The 
Fourier synthesis (1) can then be rewritten in a short 
form, 

p(r3 = (F(k)t*(k,r,)) becomes p = (Ft*), (2) 

with the averaging over all h k l  ~ (0,0,0) as above. In 
terms of the correlation function the electron density 
is evaluated as, 

p = coef((Ft*)  - (F)(t*))/[cz(F)~(t)],  

where coef is a normalization coefficient, 

q(F) 2 = (FF*) - (F)(F*), 

and 

q(t) 2 = (tt*) - (t)(t*). 

If the diffraction data set is complete to infinite 
resolution and error free then the mean values (F) 
and (t) of the vectors F and t must be zero, and the 
squared standard deviations of F and t are, 

cr(F)2--~(F 2) = lp, 

Ip = mean protein diffraction intensity, 

tr(t)E "-* (t 2) = It, 

It = mean trial wave intensity. 

Although F and t are complex numbers, because 
Friedel's law implies the summing of complex 
numbers with the corresponding complex conjugates, 
the mean values (F) and (t) here are real and ( t )=  
(t*). 

The correlation function becomes identical to the 
Fourier synthesis (2) for perfect data if the normali- 
zation coefficient coef equals (UL) j/2, 

p = ( Ip l , ) ' / 2 ( (F t  *) - (F)(t*))/[tr(F)cr(t)l---(Ft*). (3) 

For the case of complete, error-free data Ip and It are 
the theoretical precise values, It being constant and 
different for special and general positions. For a 
limited resolution It is practically constant for a 
general position and grows if a special position is 
approached. We calculate It for each t as an average 
over a complete set of h k l ' s  that is theoretically 
generated up to the resolution experimentally 
available. 

The accuracy of experimentally derived complex 
structure factors F (especially the phase component) 
varies significantly and a weighting scheme is always 
used to suppress unreliable terms. The weights w can 
also be introduced into the correlation function. The 
sum and the average values in (3) can be treated as 
weighted-sum and weighted-average values and the 
weighted correlation function can be written as, 

p = ( l f l t ) ' / 2 ( ( F t * ) w  - (F)w(t*)w)/[tr~(F)trw(t)], (4) 

where, 

(Ft*)w = ~ w F t * / Y w  conventional Fourier synthesis 
(w = FOM), 

O'w(F) 2 = (FF*)w- (F)w(F*)w 

and 

Crw(t) 2 = (tt*)w- (t)w(t*)w. 

Note that the weighted Crw(F) and Crw(t) are different 
from the unweighted normalization coefficients 
(ip)l/2 and (/,)~/2. (4) uses the correlation function to 
perform the same task as the product function used 
by the Fourier synthesis, but in a more rigourous 
manner. Functions (2), (3) and (4) are identical for 
error-free data available to an infinite resolution. If 
the resolution is limited, the data are incomplete (a 
common problem with protein data collection) 
and/or the phases determined are not accurate then 
the a p r io r i  assumptions of the Fourier transform- 
ation might not hold and the map will be distorted. 
The correlation function does not require any 
assumptions and might compensate for these errors. 
Mathematically the correlation map is not identical 
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to the Fourier map because of the different weighting 
scheme. The real weighted mean values (F) and (t) 
can differ from their theoretical zero value. The 
weighted tr(F) depends on the reflection phase 
reliabilities (the weights) available from a particular 
experiment. The value of o-(t) and (t) becomes depen- 
dent on the position in the unit cell. 

The Fourier synthesis procedure assumes that the 
values (F), (t), are always zero and tr(F) and tr(t) are 
constant throughout as it should be for the error-free 
case. The correlation function allows for their pos- 
sible variations. 

So far we have assumed that an estimate of F is 
provided which includes both amplitudes and phases. 
The correlation formula can also be applied where 
only partial information about F's is available [single 
isomorphous replacement (SIR) synthesis without 
anomalous data is an example]. The weighted corre- 
lation can be calculated between a known fraction of 
the complex F and a similar fraction of the trial wave 
t. For various cases these fractions vary. Some of 
these applications are considered below. 

Error comparison  

Let us compare the errors of the Fourier synthesis 
and of the correlation function. Assume that the 
phases are inaccurate, the data are available to a 
limited resolution and the structure-factor ampli- 
tudes are precise. This is a fair approximation to the 
most frequently encountered situation in practice. 
The weights (usually figures of merit) reflect the 
reliability of phase determination. The averaging ( )  
below will mean weighted averaging as in (4) but the 
weighting index ()w is omitted for clarity. The 
weighted Fourier synthesis provides an estimate of 
Ptru~(ri), 

PVou,(r;) = (Ft*)  = ((F_,. + fi)t*) 

= (F_it*) + (f;t*) (5) 

= (F-it*) + Ptrue(r i )~t i t*)  -'~ Ptrue(ri), 

where F_, is the diffraction from the map lacking 
density at grid point i. The Fourier approximation 
works well if the value of the parasitic cross-term 
(F_it*) is small and the mean weighted intensity 
(t;t*) of each trial wave t; is close to unity, which is 
ideally true but can differ in practice. The correlation 
function (4) gives, 

Pcor(ri) = ( I p I t i ) l / 2 ( ( F - i t  *)  - (F_ ;)(t*))/ 

[o'(F)tr(t;)] + ptru~(r~)cr( t i ) ( IeI ,  i)~/2/ (6) 

tr(F)--* Ptrue(ri). 

Fo r  the error- f ree case and inf in i te resolut ion both  
(5) and (6) approach the true value [see def in i t ions o f  
tT(F) and t~(t) above]. The Four ie r  parasi t ic  cross- 

term (F_it*) can sometimes be large due to the fact 
that both mean values (F_,.) and (t*) might not be 
zero. The correlation formula compensates for this. 
The true density Ptrue(ri) in (5) and (6) is multiplied 
by (t/t*) and [const(0tr(ti)(l,)l/2], respectively. These 
coefficients might also vary for different positions in 
the map and should be constant to return Ptrue(r;) 
correctly. As well as for the cross-term of (5) and (6) 
we believe that the r.m.s, deviation tr(ti) of the 
trial-wave intensity from its mean value [coefficient 
in (6)] is more likely to be constant than the mean 
value (t~t*) itself [coefficient in (5)]. 

The difference is illustrated by the one- 
dimensional model calculations presented in Fig. 1. 
The original electron density comprises two overlap- 
ping peaks and is represented by the solid line. The 
peak amplitudes are 0.5 and 1.0. The structure-factor 
amplitudes and phases are calculated and a random 
phase error is introduced in the range _+ 60 °. The 
Fourier synthesis (dotted line) and the correlation 
function (the dashed line) are calculated and scaled 
to the original curve so that their r.m.s, deviations 
from the error-free data are minimal. The overall 
shape of the peaks is reproduced reasonably well by 
both methods. The correlation function is twice as 
accurate as the Fourier synthesis, the mean random 
deviations from the original being 0.057 and 0.112, 
respectively. The correlation function also reveals the 
relative peak heights better than the Fourier synthe- 
sis. This example shows that the correlation map 
might be a worthwhile improvement over the con- 
ventional Fourier synthesis. 
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Fig. 1. One-dimensional model calculations. The original periodic 
density is represented by two partially overlapping Gaussian 
peaks in the unit cell of 100 grids (horizontal axis). The periodic 
diffraction pattern is calculated for the first 50 reflections. The 
random phase error A a  is introduced in the range _ 60 °, A a  = 
60°2[0.5--rnd(1)], and the weights w = 1 -pAa/180°l are 
assigned to the reflections. The weighted Fourier synthesis and 
correlation function are calculated. 
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MIR synthesis 

The MIR synthesis represents the case where the 
weights (figures of merit) can range from 0 to 1. The 
weighting scheme is determined by the reliability of 
the phase estimations. The number of low-weighted 
reflections can be large and in consequence the syn- 
thesis is effectively performed on a distorted set of 
structure factors. If a strong reflection is weighted 
down then the correct structure-factor amplitude 
value is reduced, i.e. a systematic error is introduced. 
The traditional Blow & Crick figure of merit does 
not remove this systematic error but minimizes the 
damage arising from the phase error by distorting 
the amplitudes (Blow & Crick, 1959). The weighted 
correlation function corrects for this error and allows 
the experimental errors in phase determination to be 
treated as random ones by the definition. The 
formula for MIR can be rewritten as, 

p = (mFexp ( -  ikr)) = (mFt*) = (rnFt*). 

Here F=Fexp( iab , ,~ t )  is the best experimental 
estimate for the complex structure factor, m = 
m exp(iabest) is the conventional merit factor as 
determined by the phase probability distribution 
P(a) in the MIR experiment, 

m = m exp ( i a b e s t )  = f P ( a )  exp ( i a ) d ( a ) / f P ( a ) d ( a )  

The figure of merit m represents the weight w = m 
reflecting the reliability of phase estimate at,est. The 
replacement for the weighted correlation function is 
carried out exactly as in (4). The weights w = m are 
separated from the structure-factor estimates so that 
the systematic distortions inherent to the weighted 
Fourier map are eliminated. The result should not be 
much different from the conventional Fourier 
synthesis as the phases used are essentially the same 
but as the actual difference between an interpretable 
and uninterpretable map is rather small then even a 
minor improvement should prove useful. 

SIR synthesis 

If only one isomorphous derivative without anoma- 
lous data is available then the SIR synthesis is 
conventionally used and can be written as, 

p(r) = (mF exp ( - ikr)), 

where m is the same merit factor as in the MIR 
synthesis above. The phase probability distribution, 
however, is symmetrical about the phase of the heavy 
atom a n  and has two most probable phases •prob as 
only c o s  (O~prob-  t]I~H) is available experimentally. In 
the absence of experimental errors, the phase prob- 
ability distribution is sharp and the SIR formulae 

can be written as, 

p = (COS (t]l~prob -- aH)Fexp  (/an)t*) 

= (Fcos (aprob -- au) t  COS (a, -- an))  

= (Fnta), (7) 

where aprob is either of the two possible, most prob- 
able, phases. The formula comprises a product of the 
projections Fn and tn of the vectors F and t on the 
vector H, the structure factor of the heavy atoms. 
The product can be replaced by the correlation 
function analogous to the MIR case. The difference 
is that the correlation is calculated between the 
projections rather than between complex structure 
factors themselves. In the presence of experimental 
errors, the projection Fn can be estimated from the 
phase probability distribution. Hence the weight w 
(the figure of merit m) will be modified accordingly. 
The phase-probability distribution is centred around 
a n  and the best projection Fnb~s, is the integral over 
the whole circle or over either half of it, 

Frlbest = F f  P(a)  COS (a - a n)d(  a)/  f P (a )d (a ) ,  

where 

2r r>  a >_0 or a n +  r r>  a__ a n  

o r  a H >  a _ >  a H -  7r. 

Either of two possible solutions of the SIR problem 
can be defined which are analogous to the MIR case, 

mexp(iotb~t)  = f P ( a ) e x p ( i a ) d ( a ) / f P ( a ) d ( a ) ,  (8) 

where integration is carried out over a H +  zr > a --> 
aH for one of them and over a l l >  a >-- a n - -  ~r for 
the other. Then the weight w reflects the reliability of 
the projection and the merit factor (weight w) can be 
determined analogous to MIR above them, 

w[Fcos ( a b ~ t -  all)] = wFH = FHbest, 

o r  from 

W COS (Chest -- a l l )  

= f P ( a ) c o s ( a -  a H ) d ( a ) / f P ( a ) d ( a ) .  (9) 

The definition [(8)-(9)] allows the estimate of a true 
projection value to be separated from its reliability 
(weight). If F is perpendicular to H then the projec- 
tion value is zero and the weight of the correlation 
function term can be 1, if these particular measure- 
ments are accurate enough. This term is as valid as a 
term with a high conventional figure of merit. 

The correlation formula for SIR becomes, 

p =(Iplt)l/2((Fn tn)w 

- (Fn)w(tn)w)/[o'~(Fn)trw(tn)]. (10) 

If there is a single heavy atom in the unit cell and a 
trial unit hits its position then t = H and tn = 1 for 
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all reflections. In the error-free infinite-resolution 
case for space group P1, the conventional SIR syn- 
thesis (7) becomes, 

p = (r,> = ( rcos  (ab¢~, -- a,)> = (Ft*> 

= (F exp ( - ikr)), 

where F, is the projection of F on the direction of t 
and a, is the phase of t. Two possible abc~t are 
centred around a, and the value of cos (a~s, - a,) is 
the same for both of them. Thus, the results does not 
depend on a choice between them. Either phase is as 
suitable as if the true phase is known. The SIR 
synthesis is equivalent to the conventional Fourier 
synthesis which returns the undisturbed electron den- 
sity of the protein 'under' the heavy atom. This 
density is zero if the replacement is isomorphous. It 
is actually the only position in the unit cell where the 
electron density is returned exactly by the error-free 
SIR synthesis. An image of the heavy atom develops 
as experimental errors bring the figure of merit down 
and systematically distort the mean (F,>. This error 
associated with the traces of heavy-atom structure is 
absent in the weighted correlation map (10) as the 
experimentally determined projections F, are sepa- 
rated from their weights (merit factors) by the corre- 
lation formula. 

Difference Patterson synthesis and heavy-atom search 

The heavy-atom search in Patterson space has its 
equivalent in the reciprocal space (see, Argos & 
Rossmann, 1976). The sum of difference Patterson 
values on the Harker sections corresponding to a 
position r in real space can be rewritten in reciprocal 
space as, 

~.(Fph- Fp)2(t 2 -  1), (11) 

where Fph and Fp are the derivative and native pro- 
tein structure-factor amplitudes. This expression 
comprises a product of the squared differences dP- -  
(Fph-Fp) 2 and origin-removed normalized trial 
intensity t 2 - 1. All symmetry-related positions in the 
unit cell are included in the calculation of t and the 
trial intensity is normalized to unity over infinite 
reciprocal space. For the ideal error-free case the 
mean trial intensity (t 2) should be unity so the second 
term in (I 1) oscillates around zero and the formula 
represents an intensity correlation. In general the 
transformations from reciprocal into real space and 
vice versa are amplitude correlations. Intensity corre- 
lations are used for the heavy-atom search for mostly 
historical reasons and for clarity of interpretation. 
We propose to return to amplitudes for this particu- 
lar case also. The experimental differences dF = 
[Fph- Fpl are correlated to the trial amplitudes t 

rather than intensities, 

p = (lel,)'/Z((dFt)w - (dF)w(t)w)/[~rw(dF)~rw(t)]. (12) 

The result of the calculation is a correlation map that 
shows heavy-atom positions directly. The correlation 
map is two times less sensitive to the experimental 
errors because the correlation function involves 
structure factors rather than their squares (61/1= 
2~F/F). 

In the absence of experimental errors, the maxi- 
mum possible correlation value is about 50% for the 
acentric reflections and 100% for centric. If the real 
correlation-map maxima are close to these target 
values then there are no more heavy atoms. If there 
is more than one heavy atom then the first atom is 
assigned to the highest peak in the map. The search 
is repeated again except that now t represents the 
diffraction from the atom already located together 
with another trial unit running through the map to 
give the secondary correlation map. The mean value 
of the second map is equal to the maximum value of 
the first map and the position of the secondary-map 
maximum reveals the next heavy atom. The pro- 
cedure is repeated until the correlation map rep- 
resents a random noise. The secondary correlation 
map is the reciprocal-space analogue of the Patterson 
self- plus cross-vector search. 

Fig. 2 shows an example of the primary corre- 
lation map calculated for the real data. The single 
heavy-atom positions are clearly visible both on the 
Patterson difference synthesis and on the correlation 
map. The peak-to-noise ratio for the Patterson map 
is about 3 and for the correlation map it is about 6. 
The secondary correlation map reveals another four 
minor sites which are not recognisable in the double 
difference Fourier synthesis (not shown). 

Difference Fourier synthesis 

The formula for the difference Fourier synthesis of 
the unknown fraction B of the whole structure A B  
based on the phases from the known model A also 
consists of the product of two terms, 

((FAs - FA) exp (iaA) exp ( -  ikr)) 

= ( ( F A n -  FA) exp( iaA) t*)  

=((FAn + FA)t cos (at - a A ) ) = ( d f t A )  

= (Fncos ( a n -  Ot A)t COS (at -- CeA)). (13) 

The first term is the experimentally available 
difference dF = (FAn - FA). If Fn << FA then dF = 
F n c o s ( a n -  an) and the difference represents the 
projection of the unknown Fn onto the direction of 
FA. The Sim weights (Sim, 1959) reflect the reliability 
of this approximation. The second term comprises 
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Fig. 2. The heavy-atom search for the crystals of  human tissue 
factor, space group P4~2,2, a = b = 45.2, c = 231.5 ,~ (Harlos et 
al., 1994). (a) The difference Patterson, Harker section z = !/2. 
Eight symmetry-related equivalent peaks correspond to a single 
heavy atom in the asymmetric unit. The contour levels are 1, 2 
and 3 r.m.s. (b) The correlation map section through the major 
heavy-atom position. The scale is twice the scale of the 
difference Patterson map so that the Patterson peaks overlap 
the corresponding peaks of the real-space correlation map. The 
strongest peak (correlation 21%, overall map r.m.s. 3.4%) 
corresponds to the true heavy-atom position, the contour levels 
being 2, 4 and 6 r.m.s. The weaker peaks are the ghosts 
symmetry related to the major peak. They disappear in the 
secondary correlation map. The secondary correlation map is 
fiat, r.m.s, being 1.2% compared with 3.4% of the primary 
correlation map. It reveals four minor binding sites with 
occupancies 0.2-0.3 (not shown) which bring the correlation up 
to 24.6% and make the map perfectly flat (no big peaks, r.m.s. 
0.8%). The signal/noise ratio for the correlation map is twice as 
good as that for the difference Patterson map. 

the analogous projection tA of the trial unit structure 
factor t onto the same vector FA. Thus, the difference 
synthesis can be treated as the correlation between 
projections of FB and t onto the same vector FA. The 
replacement for the weighted correlation function is 
carried out as above with the Sim or other weights 
reflecting phase probabilities of the partial structure 
(Read, 1986), 

p = ( l e l t ) l / Z [ ( d F t A ) w  - (dF) , .~ t .4) , . ] / [O'w(dF)o, . ( tA)] .  

(14) 

Once again, if there are no experimental errors (all 
weights are unity) and FB<< FA then the difference 
Fourier map does not reveal an image of the model 
FA. The errors and weights, if present, are phased as 
FA and introduces traces of the model A into the 
map. The correlation map by analogy to the SIR 
synthesis should not contain an image of the known 
model in contrast to the difference Fourier map. 

Atomicity and symmetry averaging 

If the trial wave t is replaced with an average atomic 
structure factor, then the correlation function will 
produce the probability of finding an atom at the 
specified position. If a protein is assumed to be 
composed of identical atoms, then the atomic scat- 
tering factors can be used in syntheses in the same 
way as they are used in the structure-factor calcula- 
tions. 

The correlation function becomes similar to the 
translation function with a single atom as a search 
fragment and, further, the Fourier synthesis itself can 
also be regarded as a translation function with a 
single scattering point as a primitive search fragment. 

Non-crystallographic symmetry can be incorpo- 
rated directly into a correlation synthesis once the 
borders of the symmetry-related regions are estab- 
lished. The calculation of a trial wave t is carried out 
according to whether a position r is subject to the 
local symmetry operations or not. The number of 
locally equivalent positions in the unit cell varies 
with r but the correlation stays between - 1  and 1. 
This provides a rigorous reciprocal-space analogue 
for real-space map averaging procedures. 

The correlation function and fast Fourier 
transformation 

To be able to use the fast Fourier transformation 
algorithm (FFT) the correlation formula has to be 
rewritten in the form of standard Fourier transform- 
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ations but one term in the correlation formula is 
unsuitable for this. It is the mean weighted trial 
intensity (tt*) which is part of trw(t) in (4). For the 
space group P1 it is unity irrespective of weights and 
data completeness. For other space groups it can 
vary and the FFT program itself has to be altered to 
calculate it. For our first qualitative calculations we 
have used a parallel computer and calculated all 
transformations directly without using an FFT 
algorithm. This has allowed the necessary flexibility 
at the present state of development of the correlation 
method, at the expense of considerable computer 
time. A faster program for a conventional computer 
will be developed later. 

Discussion 

The conventional Fourier formalism and the pro- 
posed correlation approach converge as the quality 
of the experimental data improves and the methods 
become absolutely identical for the ideal case of 
error-free data available to infinite resolution. The 
advantage of the correlation function is that it treats 
the systematic errors inherent in the conventional 
Fourier technique in a way that converts them into 
random erro~ such that the resulting map is not 
distorted othe~ than randomly. 

The introduction of weighting into a Fourier 
synthesis is similar to the changing of the measure- 
ments themselves so that the weighted Fourier 
synthesis effectively uses a data set that is different 
from an original one and corresponds to some differ- 
ent systematically distorted structure. The noise level 
of the distorted map becomes less because the 
unreliable terms are suppressed. Thus, a map is 
cleaned up at the expense of its overall accuracy to 
the true map. If some of the reflections are not 
measured (or the weight is zero) then they are intrin- 
sically assigned zero value and the Fourier synthesis 
returns an electron-density map that really corre- 
sponds to F = 0 for these reflections. If many strong 
reflections are not observed then the Fourier- 
synthesis map becomes significantly distorted. The 
weights are mixed with the experimentally 
determined structure-factor estimates and any 
weighting scheme introduces a map error which is 
generally avoided by the correlation approach. 

The correlation function allows separation of the 
weights from the measurements themselves and 
removes the distortions. The weighting decreases the 
effective overall resolution of the map without bias- 
ing the statistical properties of the data. The lack of 
some of the measurements only reduces the effective 
number of observations and increases the statistical 
noise level without biasing the mean result. The weak 
and zero reflections are as important for the corre- 

lation function as the strongest ones in contrast to 
the Fourier synthesis where they can be omitted. 

The suggested way of map calculation provides a 
universal approach to various methods of structure 
determination, as universal as Fourier transform- 
ation itself. Few examples are described in the 
present paper but other applications are equally 
straightforward. Computationally the same program 
can perform various syntheses, heavy-atom searches, 
non-crystallographic symmetry averaging, etc .  To 
apply the program to a particular case one has to 
realise what information about complex structure 
factors is available from a particular experiment and 
how accurate that information is. In the MIR experi- 
ment, the full complex structure factor is determined. 
For the SIR (without anomalous data) and the 
difference Fourier synthesis only a projection of a 
complex structure factor onto a certain direction is 
available. Then the appropriate parameters are cal- 
culated for the trial wave and correlated with the 
experimental values. The correlation is higher if full 
structure factors are available. It is weaker if only a 
fraction of the full structure factor is known. The 
extreme case is when only structure-factor ampli- 
tudes are measured and no phase information is 
available. Then the correlation can be constructed 
between absolute values F and t. The situation is 
similar to the heavy-atom search: if no symmetry is 
present, then t is constant throughout and nothing 
can be done. If the space group is higher than P1 
then t varies and the correlation might reveal a 
position of the molecule in the unit cell and molecu- 
lar envelope if the solvent content is high. 

The structure factors calculated from a correlation 
map by direct transformation can differ from the 
initial experimental structure factors that were used 
in correlation-map evaluation. But they should coin- 
cide for the ideal error-free data. The difference 
indicates the errors of the map. It might be possible 
to combine the recalculated structure factors with the 
initial experimental data, build the next map and 
repeat the process several times until it converges. 
This potential for map improvement looks promising 
but still has to be analysed in more detail. 

The weighted correlation function uses the same 
data as the conventional Fourier but in a more 
rigorous way. If the errors are high then both 
methods fail. If they are low then both methods 
work well. However, the correlation method might 
allow interpretaion of maps produced from lower 
quality data. The extent of the improvement depends 
upon the specific experiment. It is obviously more 
sensible to collect better data than to spend time 
trying to improve maps computed with poor data. 
Unfortunately, it is often impossible and any 
improvement, however small, must therefore be con- 
sidered welcome. The present paper is more an intro- 
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duction of  the correlation approach rather than an 
extensive analysis of  its merits and drawbacks which 
will be carried out elsewhere separately for each 
particular implementat ion.  
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puting. The Edinburgh Parallel Comput ing  Centre is 
thanked for providing the computer  facilities and the 
SERC for financial support.  
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